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ABSTRACT
Currently acoustics is the primary modality for underwater
communication even though it presents a difficult channel.
To try and cope with the challenges of the channel many
MAC protocols and PHY layer techniques have been pro-
posed. In this paper we present a research platform that
allows developers to easily implement and compare their
protocols in an underwater network and configure them at
runtime. We have built our platform using widely supported
software that has been successfully used in terrestrial radio
and network development. The flexibility of development
tools such as software defined radio have provided the abil-
ity for rapid growth in the community. Our platform adapts
some of these tools to work well with the underwater envi-
ronment while maintaining flexibility, ultimately providing
an end-to-end networking approach for underwater acoustic
development.

1. INTRODUCTION
The underwater medium presents many challenges for dig-
ital communication. There is limited available bandwidth
and high bit error rates caused by multipath, fading, and
long propagation delay. The speed of sound is five orders
of magnitude less than that of terrestrial radio, which can
make it hard for underwater networks to synchronize, ex-
change data, update routes, and communicate efficiently.

Due to the severity of multipath underwater, a receiving
node might be at a point where there is little energy in
the received signal making it hard to receive without errors
[14]. These spots of destructive multipath interference vary
with time due to the movement of water, and make it quite
hard to even have a static network topology. Along with
multipath, other unfavorable characteristics such as ambi-
ent noise, bubbles, surface scattering, and slow propagation
speed make developing underwater networks a difficult task
[14].

Furthermore, the ocean varies significantly both temporally
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and spatially, which makes it challenging to create a model
of a “typical” underwater acoustic channel [14]. Since there
is no “typical” model, there is no single network architecture
that works best in all situations. Therefore, depending on
the current characteristics of the channel, there is a vari-
able amount of bandwidth, various noise sources in different
frequency bands, varying inter-symbol interference (ISI) de-
pending on the water depth, and many other characteristics
under consideration. Even if the channel noise is known,
attenuation still depends on both distance and frequency,
along with space and time varying multipath [16].

We present a software defined Underwater Acoustic Net-
working plaTform (UANT) to aid development of underwa-
ter acoustic networks. A software defined system can help to
address the constantly changing underwater acoustic chan-
nel by way of reconfigurability. A flexible approach allows
for system parameters at all layers to be easily modified
without the need for specialized hardware. UANT uses GNU
Radio, a software defined radio framework, to achieve con-
figurability at the physical layer. TinyOS has been widely
adopted for the use on sensor network platforms and pro-
vides a full network stack. We adapted these widely sup-
ported tools that have proven effective prototyping, devel-
opment, and implementation for terrestrial networks to be
used in UANT.

Since the characteristics of the underwater acoustic chan-
nel cannot be properly modeled with a static configuration,
it is important to be able to change the properties of an
acoustic modem at run time. UANT has the flexibility of
software defined radios and the advantages of the network
layers of TinyOS and Linux, ultimately providing and end-
to-end network for easy underwater development from the
physical to application layer.

2. BACKGROUND
Software defined techniques have been of interest in recent
years not only for terrestrial radios but also underwater
acoustics. In [6], Jones describes some of the benefits to
the use of software define radio for underwater use. She
talks about the possibility to improve underwater acoustic
performance by using methods that have worked well with
terrestrial radios such as Cognitive radio via software defined
techniques.

The rModem [17] developed at MIT by Sozer and Stojanovic,
was created with a similar goal of having a configurable
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acoustic modem. However, the rModem is a standalone
board that uses an FPGA and DSP. Furthermore, rModem
focuses on lower layers and does not provide an end-to-end
networking environment, making it hard to study the im-
pact on actual applications. We hope to supplement plat-
forms such as the rModem by aiding research in MAC and
PHY layer protocols that can ultimately be implemented on
standalone nodes to create an underwater network.

2.1 GNU Radio and USRP
Software defined radio has received a lot of attention most
notably in the research community. The ability to use soft-
ware to modulate and manipulate the received and transmit-
ted signals allows for rapid development without the need
or cost of specialized hardware. GNU Radio [4], one of the
most popular SDR frameworks, is comprised of a flow graph
and signal processing blocks. The signal processing blocks
are written in C++ and act as the “heavy lifters” whereas
the flow graph is setup in Python in order to move data
from one block to the next. In this way many modulation
schemes can be created using standard C++ blocks (already
included in GNU Radio) and connecting them together in a
flow graph. There is a large community of users who have
contributed to this open source project, both signal process-
ing blocks as well as various applications. The many con-
tributions have led to a large library of modulation schemes
including GMSK, PSK, QAM, CPM, OFDM, and more.

We have modified one of the digital communication appli-
cations that is included with the GNU Radio distribution.
The application was created to connect PCs forming a net-
work, using Universal Software Radio Peripheral (USRP).
The USRP created by Ettus Research [1], is a radio front-
end that is commonly used with GNU Radio. Although the
option of using a sound card provides a low cost solution,
the USRP offers a wider frequency range as well as more
dedicated hardware. The USRP has a total of 4 ADCs and
4 DACs allowing for up to 16 MHz of bandwidth each way,
which is proficient for the underwater acoustic channel.

2.2 TinyOS and TOSSIM
TinyOS is a widely used sensor network operating system
created at University of California, Berkeley and meant for
sensor nodes requiring concurrency and flexibility while be-
ing limited to resource constraints [9]. TinyOS is imple-
mented in the NesC language, which supports the concur-
rency model needed for sensor networks. TinyOS is widely
used both in commercial applications as well as in academics
for research purposes. There is a large user base who con-
stantly contribute to the open source project, which allows
UANT to always benefit from the newest protocols. For
instance Washington University contributed a MAC Layer
Architecture [7] to provide the MAC layer with many com-
monly needed functions for MAC protocols.

Generally TinyOS is compiled for a sensor network platform,
with a network stack in accordance with the specific radio
being used. However to gain the benefits of using TinyOS
in UANT we have chosen to use TOSSIM [8], which simu-
lates sensor network nodes on a PC. TOSSIM was created
in order to support compiling TinyOS component graphs
into a simulation for a PC. It utilizes a discrete event queue,
reimplements some of the sensor nodes hardware, models the

radio and ADC of a mote, and most importantly for UANT,
uses communication services for external programs to com-
municate with the running simulation over TCP sockets [8].
TOSSIM fully supports the TinyOS toolchain making it ef-
fortless to transition from simulation to real network, or vice
versa. TOSSIM executes in a similar fashion to a real mote,
with each simulation having a notion of a virtual clock run-
ning at 4MHz. TOSSIM uses interrupts similar to that of
a mote, however when an event fires, the simulation calls
an interrupt handler in a hardware abstraction component.
In UANT, TOSSIM is not used as a simulation framework
but rather the real time running nodes, this is explained in
greater detail in the next section.

2.3 Current Underwater Solutions
2.3.1 MAC Layer

Due to the complications that the underwater acoustic chan-
nel provides, many of the current state of the art protocols
that are used in terrestrial wireless communications, are not
suitable underwater. One of the most notable differences
between the two mediums is the propagation delay. This
propagation delay that can often be neglected in terrestrial
MAC protocols, is apparent underwater and must be taken
into consideration. One MAC protocol that Syed et el. pro-
posed for underwater acoustic communication is T-Lohi [18]
which was designed to help ease the space-time uncertainty
that is prevalent in the underwater acoustic channel. T-Lohi
uses a contention based scheme where nodes send out a tone
during a reservation period, and depending on the amount
of contenders will either be followed by data transmission or
another reservation period. Here the long propagation delay
is compensated for as long as the reservation period is longer
than the maximum propagation delay in the network.

Other suggested underwater acoustic MAC protocols include
slotted FAMA [11] and UWAN-MAC [13]. UWAN-MAC si-
multaneously tries to overcome the long propagation delay
as well as reduce energy to minimize cost. This is done
by assuming that the propagation delay will not change be-
tween transmission cycles, then sleep-wake cycles are estab-
lished for all nodes that are in communication range. Slotted
FAMA [11] is an adaptation of FAMA in order to cope with
the long propagation delay. In traditional FAMA, control
packet lengths depend on the propagation delay which can
lead to a large waste of energy for underwater acoustic net-
works. Slotted FAMA, similar to the of T-Lohi reservation
periods, requires that each transmission slot be as long as
the maximum propagation delay plus the length of a control
packet. If a node wants to send data, first it will send an
RTS at the beginning of a slot. If the receiving node al-
lows the data transmission it will then send a CTS packet
immediately following the RTS slot. Once the RTS/CTS
exchange is complete, the transmitting node will begin to
send the data two slots after the initial RTS was sent out.
Finally an ACK is sent back to the transmitter to complete
the exchange. Although this method will drastically reduce
the amount of packet collisions, it comes at a cost of lower
throughput due to the overhead associated with the proto-
col.

2.3.2 Physical Layer
Over the history of underwater acoustic communication nearly
every form of modulation has been attempted. Phase, fre-



quency, amplitude, and spread spectrum techniques have all
been used [6] [3]. While some of this variation can be at-
tributed to the advancement of demodulation techniques,
it is still not clear if there is one “best” PHY layer scheme,
again this is due to the fact that there is no“typical” channel
model.

The absence of a clear “winner” in both the physical and
MAC layers, is the motivation for having a highly config-
urable system. UANT tries to provide this configurability
which is needed in order to cope with the harsh underwater
acoustic channel, while providing a full network to charac-
terize application performance.

3. SYSTEM ARCHITECTURE
UANT has been created as a platform to allow testing of
new protocols and modulation schemes on a fully functional
underwater network. We used open source software (GNU
Radio and TinyOS) that is widely supported and has been
in use for many years. TinyOS applications are able to be
incorporated into UANT simply by changing the configura-
tion file to match the needs of the specific application. The
running application can be easily monitored in Linux either
by monitoring the TOSSIM simulation through currently
supported techniques such as debug statements, or packets
being forwarded over a TCP socket where the raw bytes
of transmitted or received packets can be viewed, or both.
Along with running TinyOS applications, it is possible to as-
sign an IP addresses to the TOSSIM node in order to inject
TCP/IP packets and use a wide variety of Linux applications
to send data between nodes. UANT uses TOSSIM to run
TinyOS applications and components on a PC in real-time
fashion rather than being used as a simulator. This is similar
to EmTos [5] where a wrapper around a TinyOS application
is used to run on an EmStar node. It is important to note
that each node in UANT is running in a different TOSSIM
simulation. This allows the ability for every node to run a
unique and different application, which is not possible in a
single TOSSIM simulation.

Although the non-negligible latency introduced from sam-
ples traveling from the hardware frontend to software can
make it difficult to develop a MAC layer for SDR, the long
propagation delay of the underwater channel makes it possi-
ble to ignore this latency. In recent work from Nychis et el.
[12] the use of “split-functionality” was implemented in or-
der to take advantage of the minimal latency on the USRP,
yet still maintaining the control of the data flow in the host
CPU. However, with the slow propagation delay of the un-
derwater acoustic medium, the added bus latency between
the USRP and the MAC layer implemented on the host ma-
chine can be considered negligible. The speed of sound un-
derwater is 1500 m/s, so for two nodes that are 1.5km apart
the propagation delay is approximately one second. In [15],
Schmid et el. measured SDR latency and characterized the
round trip time to and from the USRP to be between 3ms
and 26.5ms. The 26.5ms measurement included host pro-
cessing of the 802.15.4 protocol, while 3ms is the theoretical
latency to and from the host assuming no computation is
done on the host machine. Although in terrestrial radio this
latency makes some MAC protocols such as TDMA hard
to implement, for underwater acoustics this is .3% of the
propagation delay for nodes 1.5km apart.
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Figure 1: UANT System Architecture

3.1 Architecture
UANT provides reconfigurability at the physical layer, the
MAC layer, and the application layer. With control over
these layers, we aim to provide a way to implement and com-
pare proposed underwater MAC protocols and PHY layer
techniques in the presence of a network running applica-
tions from Linux or TinyOS. Although UANT must be run
on a PC, we tried to keep in mind that the end goal for
much of the current underwater acoustic communication re-
search is geared toward underwater sensor networks (USN)
and underwater autonomous vehicles (UAV).

3.1.1 Overview
The flow of data through UANT can be seen in Figure 1.
To receive packets, data is first heard by the transducer and
passed through to the USRP, which will sample and down
convert the data. The data continues over USB to software
where GNU Radio first passes the data through an FFT
filter. The streaming samples now represent the complex
baseband signal in the frequency domain needed for demod-
ulation. Depending on the modulation scheme that is being
used the data will be processed accordingly. The output of
the demodulation blocks is a string of bits which will be fed
to a message queue in GNU Radio.

GNU Radio is started with a Python script, which estab-
lishes the flow graph of C++ blocks for the data to travel
through. In UANT, the same Python script that is used
to start the flow graph is also used to communicate with
TinyOS. Data in the message queue that has been demod-
ulated and ready to enter TinyOS must first be packed into
a TinyOS serial packet with a one byte modification. If the
incoming packet has a broadcast address it is changed to
be the address of the currently running node ID on the host
machine, which is necessary due to the limitations of the Se-
rialActiveMessages of TinyOS. The packet is then sent over
a socket to TOSSIM where it first enters the MAC layer. De-
pending on what type of message has been received, it will
be properly routed through the TOSSIM simulation, and
possibly to Linux via a virtual Ethernet card if required.

3.1.2 Physical Layer
GNU Radio has been widely adopted by the SDR commu-
nity. There has been much advancement in terrestrial ra-
dios with the introduction of software defined radio. We
have chosen to use GNU Radio for UANT in order to try
and bring its success for fast prototyping and development
to the underwater environment. GNU Radio offers many
signal processing blocks that are required for basic and ad-
vanced modulation techniques. There have already been
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Figure 2: TOSSIM simulation on node

many modulation schemes implemented in GNU Radio us-
ing these standard signal processing blocks. We have incor-
porated much of the prior work that has been done with
GNU Radio including these modulation schemes as well as
some of the example applications. Specifically we modified
the tunnel example file that allows the USRP boards to be
assigned IP addresses and use Linux applications. Mod-
ifications that were made include removing the simplified
version of a single CSMA MAC, allowed for slower bit rates
that could be desired in a harsh underwater channel, and
changed the traffic source and sink from Linux to TinyOS.
Keeping the modifications of the GNU Radio example to a
minimum allows UANT to use any future expansion to the
digital communication examples to be effortlessly incorpo-
rated into our system.

Although currently GNU Radio is too computationally ex-
pensive for embedded implementations, we preferred the
ability for rapid prototyping and test of PHY and MAC
even if it means that our host must be more powerful than
some lower end platforms such as motes. If development of
network protocols leads to increased performance on UANT
it can ultimately be ported to the platform that is used in
the USN or UAV, or directly transferred if TinyOS or Linux
is used by the system. In addition, we later show that even
with a more capable host UANT is still field-deployable and
has been tested in different real world environments. His-
torically much of the development for GNU Radio has not
considered energy savings which is essential for USN; how-
ever, there has been some recent work in this direction. In
[12], there is a power saving method presented for fast pat-
tern detection in order to only pass the received packet over
USB if it is in fact intended for the listening node.

3.1.3 MAC Layer
One aspect of GNU Radio that makes it inherently hard for
compatibility with higher layer protocols is the use of flow
graphs. We have chosen to use TinyOS to implement the
MAC layer and transition from GNU Radio flow graphs to
a packet based system. In [10], Click was used to develop
a MAC layer for SDR however all applications had to be
run in Linux. The reason for using TinyOS in UANT is
two-fold. First and foremost, much of the motivation to ad-
vance underwater acoustic communication comes from the
attempt to further underwater sensor networks. USN have
limited resource constraints and are the perfect candidate

to run TinyOS since it is made specifically for this class of
device. UANT is designed for research purposes specifically
on different MAC and PHY layers, but using TinyOS will
allow for an easier transition to an underwater sensor net-
work node. The second reason we chose TinyOS comes from
the fact that there is a large contributing base of users. This
allows for UANT to benefit from development of protocols
and algorithms for MAC and higher layers that are currently
implemented as well as being developed for TinyOS.

As previously mentioned, GNU Radio provides a message
queue which is able to make the transition from a stream-
ing flow of data to a packet which highly facilitates the im-
plementation of a MAC layer. In UANT the MAC layer
sits closest to GNU Radio, in this way any packet that is
sent to TOSSIM over the serial connection originating at
the transducer will first pass through the MAC. A block di-
agram of the TOSSIM simulation can be seen in figure 2.
If the packet has been determined to be a control packet,
it will not proceed further than the MAC layer, and will
be acted upon immediately, for instance to send an ACK,
CTS, or any other packet needed for the current protocol in
use. However, if the packet is for the running application, it
will be sent straight through the MAC and control layers to
the application. The received message is not queued here,
it is left up to the application to queue received messages if
needed. Messages that are to go beyond the MAC layer are
only queued if they are intended for Linux via the virtual
Ethernet card.

3.1.4 Application Layer
UANT not only provides flexibility at the MAC and PHY
layer, but also gives two options on where to run applica-
tions. TinyOS applications that can currently run in TOSSIM,
can be easily integrated into UANT. The configuration file
must be wired properly in order to correctly connect the ap-
plications components, while the application code itself will
change very minimally if at all. Using TinyOS in UANT for
applications allows to develop in an environment similar to
what could potentially run on an USN. These applications
along with the MAC layer could be directly implemented on
a sensor node running TinyOS in the future. For more com-
plex applications we have also provided the ability for Linux
to be used. In UANT if this option is enabled, a virtual
Ethernet card will be established. All IP addresses of the
network must have the same network ID and the possible
number of unique addresses for the network is 254. Appli-
cations such as ping, file transfer, and even media streaming
applications could be possible with the use of proper physi-
cal layer modulation schemes that allow for the bandwidth
needed. Not only does this allow for Linux applications to be
used, but also for network monitoring tools that have been
created such as wireshark [2] to be used to help characterize
and monitor the links, since Linux sees UANT as a NIC.

It is possible to run both Linux and TinyOS applications
simultaneously. This is accomplished using a control block
that sits in TinyOS between the MAC and the application.
A FIFO queue is kept (of configurable size) which allows
packets from TinyOS and Linux to be multiplexed for more
flexibility. When the MAC is ready to send a packet from a
higher layer, it will simply signal for the first message in the
queue. Any pending packets in the queue will be sent out
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fier/switch board showing bidirectional nature of us-
ing single underwater transducer and a switch con-
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path (red), and shared transmit and receive path
(blue) are shown.

to GNU Radio and through the water.

3.2 UANT and Linux
If Linux applications are chosen to be used then UANT ben-
efits from Linux’s TCP/IP stack. This is accomplished by
using a TUN driver. A Python script is used to help estab-
lish the virtual Ethernet card and manage packets between
Linux and TinyOS. Once the Python script has been started,
an IP address can be assigned to the TinyOS node. The
IP address that is manually assigned must have the same
network address as all other nodes and the last byte must
correspond to the same node ID used for the TOSSIM sim-
ulation. One current limitation in UANT regarding packets
originating from Linux is the maximum transmission unit
(MTU) must be set below 247 bytes. The reason for this
is the packet size from Linux plus the TinyOS header size
must be less than 256 bytes in order to be used with TinyOS
packet protocols. The good news is UANT assigns the ap-
propriate IP address with the MTU size that is set by the
user.

Once the TinyOS node has been assigned an IP address
Linux views UANT as a network card. The advantage to this
approach is that UANT can now provide a full networking
solution for underwater acoustics using the TCP/IP stack of
Linux. As we later show this allows for application perfor-
mance to be studied as a function of configuring the lower
layers including MAC and PHY. If TinyOS applications are
preferred than the many networking protocols that are avail-
able and used for sensor networks can be easily incorporated
into UANT.

4. IMPLEMENTATION
We have implemented UANT on Linux boxes using the Intel
core 2 quad Q8200 processor, with 4GB of memory. We used
USRPs using the LFTX and LFRX daughterboards which
have a range of DC-50MHz, allowing for use in any underwa-
ter acoustic range. Typically with the low frequency daugh-
terboards a separate transducer must be used for receiving
and transmitting, since the daughterboards are independent.
We have built a custom preamplifier board that also incorpo-
rates a switch in order to allow for one transducer per node,
as well as amplify the received signal entering the USRP.
We used RESON TC 4013 transducer for both transmitting
and receiving, with a possible range of .1 Hz to 175 kHz.

(a) Front view of UANT system

(b) View inside drawer

Figure 4: These two figures show a deployable
UANT system (a) front view and (b) inside view of
USRP, low frequency daughterboards and custom
preamplifier and switch.

The preamplifier that we built cut cost by using off the shelf
ICs. Furthermore only one transducer is needed rather than
the usual two transducers required for the low frequency
USRP daughterboards. The USRP allows control over sev-
eral GPIOs which we wired to a switch on the preamplifier
board. On one end of the SPDT switch is the transducer
being used both for transmitting and receiving. The receive
side of the switch is fed into the preamplifier and finally
out to the LFRX daughterboard. While the other signal
path begins at the LFTX daughter board, goes through the
switch and out the board to the transducer and through the
water. A simplified schematic of this can be seen in figure
3. We have configured the GPIO to remain high unless the
USRP is transmitting in which case it will be toggled low.
After the transmission is completed the GPIO will again be
high and the system will be in receive mode waiting for an
ACK or any other packet to receive. The preamplifier can be
powered from the USRP which ensures the need of only one
power source for all components of UANT, making field de-
ployments much easier. Powering the preamplifier from the
USRP allows for a maximum voltage swing of 6.6V. Using
a high gain amplifier we were able to correctly demodulate
a signal less than 10 mV without any problem.



(a) FFT of tank setup.

(b) FFT of larger pool.

Figure 5: Frequency spectrum of tank (a) and pool
(b). The two large noise sources (around 25kHz
in the tank, and 75kHz in the pool) are the water
pumps.

A deployable UANT system can be seen in figure 4. We
have used rackmount servers (described above) enclosed in
a rugged case for UANT to be taken into various terrain.
A rackmount drawer was modified for UANT to be able to
quickly access all connections to and from the USRP and
the outside world. The USRP can be powered with any 5-6
V DC power supply allowing hard drive power connectors
to power the USRP along with our amplifier boards used for
acoustic communication. For field deployments a universal
power supply can be used to power these UANT boxes.

For our MAC layer we currently implemented a basic Aloha
protocol in TinyOS. The configurable parameters for this
MAC are the minimum and maximum times for a back-
off interval. If no ACK was received after data was sent,
a retransmission is sent after a random time between the
provided interval.

For the physical layer we have taken advantage of many of
the configurable options that are provided for digital com-
munication in GNU Radio. Transmission bit rate can be
configured from 244 bits per second to 500 kilobits per sec-
ond. We also varied the center frequency, and the limits are
from .1 Hz up to 30 MHz which makes the real limiting fac-
tor the transducers (and the channel) being used which in
our case was a maximum of 175 kHz.

Currently, due to transmission output power limitations (less
than 500 mW) we have been limited to the distance of our
communications. The USRP has a maximum output volt-
age of two volts peak-to-peak. The underwater transduc-
ers being used have high input impedance at ideal acoustic
frequencies requiring further power amplification for long
range. For most of our testing we used high frequencies
(100 kHz - 175 kHz) because the impedance of the trans-
ducer is much lower allowing for higher transmit power. The

(a) Original GMSK signal without multipath.

(b) Effect of multipath on a GMSK signal.

Figure 6: These two figures show the effect of mul-
tipath on a GMSK Signal. (a) shows the original
signal, without multipath. Figure (b) is the result if
the same signal gets transmitted through a tank.

gain of this added transmit power was more beneficial than
the higher attenuation with distance that occurs at these
frequencies. Even with the power limitation we have still
successfully deployed UANT both in our lab tank as well as
in a pool.

5. EVALUATION
The need to have a deployment time configurable system is
realized with figure 5. Depending on the location the opti-
mal transmit center frequency can differ. The noise source
of the lab tank was primarily the filtration system which was
centered around 25kHz. When we deployed UANT in the
pool we found that the noise source was centered closer to
75kHz.

Although it might be expected that a controlled environment
would produce better results than a real world scenario this
is not always the case. We found that our tank inside the lab
was unfavorable for acoustic communication. The reason for
the poor results can be seen in figure 6, where the multipath
of the signal is quite apparent. The modulation for this
test was not amplitude modulation but rather GMSK. The
reason there is such a variation in the amplitude of the signal
is multipath and inter-symbol interference, which is a result
of the slow speed of propagation. The best remedy for the
multipath in our lab tank is to lower the transmission speed,
this allows more samples per symbol to be sent out to the
USRP and received at the transducer.

One counterintuitive result we found in our lab tank test-
ing was the effect of our water filtration system. Generally
introducing a source of noise such as a filter that produces
bubbles, acoustic noise, and surface waves, will degrade per-
formance. Surprisingly this is not the case and the explana-
tion goes back to multipath. With the water standing still a
transducer that is attempting to receive can be caught in a
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Figure 7: Average number of packet retransmissions
needed and round trip time with varying minimum
backoff time. Ping performance averaged over 50
pings for each data point with center frequency at
100 kHz and transmit rate at 5 kb/s. All backoff
intervals (max - min) set to 400ms

blind spot of destructive multipath interference such that al-
most no signal is seen. Although typically these blind spots
vary with time and space due to moving reflective surfaces
such as waves, in a controlled environment this is poten-
tially not the case. Turning on the filter, although introduc-
ing noise, improved system performance by receiving up to
twice the amount of correct packets because of the now time
varying blind spots.

UANT allows the ability to see application level performance
as a factor of the tunable parameters at the PHY and MAC
layer. Figure 7 shows how changing the minimum time
needed to wait for an ACK before retransmission affect the
Linux ping application. The backoff interval is set to 400
ms for this experiment and all other parameters are con-
stant. If the minimum time to wait is too small there will
be many packet collisions mostly with the retransmission of
data and the ACK packet itself, this leads to an increased
number of retransmissions. On the other hand, if the mini-
mum time before retransmission is too large than if a packet
is not received the transmitter is waiting needlessly long to
resend the data leading to low throughput and a high round
trip time (RTT) even though very few retransmissions are
needed. Looking at this plot it is clear that trade-offs can
be achieved to either optimize for minimum transmissions,
quickest RTT, or a function of both.

Another application that was tested in UANT was Net-
perf. Netperf establishes a connection between a client and
server and then sends TCP packets across the link. Figure
8 shows the results from the Netperf testing, where each
data point was collected over approximately a 300 second
interval. Here we varied the transmission rate at both the
physical layer and MAC layer to see how that would af-
fect performance. Regardless of the transmission rate if the
Aloha minimum backoff interval was too low than it would
cause many retransmissions. As the minimum backoff inter-
val increased we found that the amount of retransmissions
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Figure 8: Netperf performance while varying min-
imum Aloha backoff time at different transmission
rates. Each data point collected over 300 seconds of
communication

decreased since the nodes were not trying to retransmit to
soon. As the transmission rate varied the amount of retrans-
missions needed also varied. The fastest rate of 15 kb/s lead
to the least amount of retransmissions while the slowest rate
that was tested (7.5 kb/s) resulted in the highest amount of
retransmissions. This result brings up another advantage
of having an easily reconfigurable system which allows to
specify parameters at runtime.

We have also implemented an example TinyOS application
that fires a periodic timer and transmits its count over the
network to the other nodes. We were able to leave the ap-
plication code unmodified while only changing the wiring
configuration. The throughput of this application was much
higher than the Linux applications that we tested for per-
formance. One reason for this being that the overhead of a
TCP/IP packet is much greater than the eight bit TinyOS
message header that was used. Also there is added latency
for packets from Linux to get to TinyOS and then sent out,
when compared to that of the application currently running
in TOSSIM.

6. FUTURE WORK
Thus far UANT has benefited from widely used open source
tools namely; GNU Radio and TinyOS. Although we have
applied their protocols and algorithms along with imple-
menting a few of our own, many are geared toward over the
air or wired communication. In the future we plan to imple-
ment some of the currently proposed underwater protocol
solutions mentioned in section 2. Allowing the protocols to
be compared using UANT with either a TinyOS or Linux
application to benchmark performance will help distinguish
strengths of each solution as compared with one another.
We plan to further study the effect of changing PHY and
MAC layer parameters.

Along with building the repertoire of protocols and config-
urable options we plan to take advantage of the software
defined approach that is used in UANT. For instance, cur-
rently all the parameters are set at deployment time and if



loud noise sources arise at the chosen center frequency per-
formance will degrade. In the future we plan to incorporate
adaptively setting parameters such as frequency band and
transmit power based on channel conditions, distance, noise
and interference. In this way UANT will be able to cope
with many undesirable effects and still have good perfor-
mance. We also plan to continue to study the trade-offs that
are apparent with different MAC and PHY layer schemes.

7. CONCLUSION
The challenges of the underwater acoustic channel are great,
requiring the need for flexibility during system development.
We have presented UANT as a complete end-to-end net-
working platform for underwater acoustic communication.
UANT is designed for field-deployment, geared toward fast
prototyping and testing of PHY and MAC layer schemes. It
is implemented using open source software, facilitating fur-
ther extension. We have demonstrated a Linux application
running on UANT and shown how configuring the system
can lead to a benefit in overall performance.
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